Newton's Second Law

$\mathrm{F}=\mathrm{ma}$

1. What do the symbols F, m and a stand for?
2. What are the units of F, m and a ?
3. Rearrange $F=m$ to find expressions for m and a
4. Calculate the resultant force required to accelerate an object with mass 4.5 kg at $6.0 \mathrm{~m} / \mathrm{s}^{2}$.
5. Calculate the acceleration when a resultant force of 72 N is applied to a mass of 18 kg .
6. A resultant force of 42 N causes an object to accelerate at $2.8 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the mass of the object.
7. Calculate the acceleration of a 48 g mass when it is pulled with a force of 10 N , but a frictional force of 2.8 N acts in the opposite direction.
8. A car of mass 1200 kg is travelling at $15 \mathrm{~m} / \mathrm{s}$. The brakes are applied and the car comes to a rest in 8.0s. Calculate the resultant force on the car.

A person is sitting on a chair. The resultant force on her is zero. What will happen to her?

A rocket is taking off. It is accelerating upwards. Is there a resultant force on the rocket?

If there is, show its direction with an arrow.

A skydiver is falling at a constant speed of 120 mph . Is there a resultant force on her?

If there is, show its direction with an arrow.

The resultant force on this lorry is shown in green. What will happen to the lorry?

